
Operating Systems (Fall/Winter 2018)

Light-Weight Processes: Dissecting Linux Threads

Yajin Zhou (http://yajin.org)

Zhejiang University

source: https://opensourceforu.com/2011/08/light-weight-processes-dissecting-linux-threads/

http://yajin.org

Thread

• Threads have their own identity (thread ID), and can function
independently.

• They share the address space within the process, and reap the
benefits of avoiding any IPC (Inter-Process Communication) channel
(shared memory, pipes and so on) to communicate.

• Threads of a process can directly communicate with each other

• for example, independent threads can access/update a global
variable.

• This model eliminates the potential IPC overhead that the kernel would
have had to incur. As threads are in the same address space, a thread
context switch is inexpensive and fast.

How does Linux implement threads?

• User-level threads in Linux follow the open POSIX (Portable Operating System
Interface for uniX) standard, designated as IEEE 1003. The user-level library (on
Ubuntu, glibc.so) has an implementation of the POSIX API for threads.

• Threads exist in two separate execution spaces in Linux — in user space and
the kernel.

• User-space threads are created with the pthread library API (POSIX
compliant).

• In Linux, kernel threads are regarded as “light-weight processes”. An LWP
is the unit of a basic execution context. Unlike other UNIX variants, including
HP-UX and SunOS, there is no special treatment for threads. A process or a
thread in Linux is treated as a “task”, and shares the same structure
representation (list of struct task_structs).

• These user-space threads are mapped to kernel threads.

How does Linux implement threads?

• For a set of user threads created in a user process, there is a set of
corresponding LWPs in the kernel

What is a Light-Weight Process?

• An LWP is a process created to facilitate a user-space thread. Each
user-thread has a 1×1 mapping to an LWP.

• The creation of LWPs is different from an ordinary process; for a user
process “P”, its set of LWPs share the same group ID. Grouping
them allows the kernel to enable resource sharing among them
(resources include the address space, physical memory pages (VM),
signal handlers and files). This further enables the kernel to avoid
context switches among these processes. Extensive resource
sharing is the reason these processes are called light-weight
processes.

How does Linux create LWPs

• Linux handles LWPs via the non-standard clone() system call. It is
similar to fork(), but more generic. Actually, fork() itself is a
manifestation of clone(), which allows programmers to choose the
resources to share between processes.

• The clone() call creates a process, but the child process shares its
execution context with the parent, including the memory, file
descriptors and signal handlers. The pthread library too uses clone()
to implement threads. Refer to ./nptl/sysdeps/pthread/createthread.c
in the glibc version 2.11.2 sources.

Create your own LWP

Create your own LWP

// 64kB stack
#define STACK 1024*64

// The child thread will execute this function
int threadFunction(void* argument) {
 printf("child thread entering\n");
 close((int*)argument);
 printf("child thread exiting\n");
 return 0;
}

int main() {
 void* stack;
 pid_t pid;
 int fd;

 fd = open("/dev/null", O_RDWR);
 if (fd < 0) {
 perror("/dev/null");
 exit(1);
 }

 // Allocate the stack
 stack = malloc(STACK);
 if (stack == 0) {
 perror("malloc: could not allocate stack");
 exit(1);
 }
 printf("Creating child thread\n");

Create your own LWP
 // Call the clone system call to create the child thread
 pid = clone(&threadFunction,
 (char*) stack + STACK,
 SIGCHLD | CLONE_FS | CLONE_FILES |\
 CLONE_SIGHAND | CLONE_VM,
 (void*)fd);

 if (pid == -1) {
 perror("clone");
 exit(2);
 }

 // Wait for the child thread to exit
 pid = waitpid(pid, 0, 0);
 if (pid == -1) {
 perror("waitpid");
 exit(3);
 }

 // Attempt to write to file should fail, since our thread has
 // closed the file.
 if (write(fd, "c", 1) < 0) {
 printf("Parent:\t child closed our file descriptor\n");
 }

 // Free the stack
 free(stack);

 return 0;
}

Create your own LWP

A Slight Change to the Code
 // Call the clone system call
 pid = clone(&threadFunction,
 (char*) stack + STACK,
 SIGCHLD | CLONE_FS | CLONE_FILES |\
 CLONE_SIGHAND | CLONE_VM,
 (void*)fd);

 // Call the clone system call
 pid = clone(&threadFunction,
 (char*) stack + STACK,
 SIGCHLD | CLONE_FS |\
 CLONE_SIGHAND | CLONE_VM,
 (void*)fd);

Another Example: CLONE_VM
static int child_func(void* arg) {
 char* buf = (char*)arg;
 printf("Child sees buf = \"%s\"\n", buf);
 strcpy(buf, "hello from child");
 return 0;
}

int main(int argc, char** argv) {
 // Allocate stack for child task.
 const int STACK_SIZE = 65536;
 char* stack = malloc(STACK_SIZE);
 if (!stack) {
 perror("malloc");
 exit(1);
 }

 // When called with the command-line argument "vm", set the
CLONE_VM flag on.
 unsigned long flags = 0;
 if (argc > 1 && !strcmp(argv[1], "vm")) {
 flags |= CLONE_VM;
 }

 char buf[100];
 strcpy(buf, "hello from parent");
 if (clone(child_func, stack + STACK_SIZE,
flags | SIGCHLD, buf) == -1) {
 perror("clone");
 exit(1);
 }

 int status;
 if (wait(&status) == -1) {
 perror("wait");
 exit(1);
 }

 printf("Child exited with status %d. buf =
\"%s\"\n", status, buf);
 return 0;
}

Why COW (Copy on Write) Is Not Enough

• For processes, there's a bit of copying to be done when fork is
invoked, which costs time. The biggest chunk of time probably goes
to copying the memory image due to the lack of CLONE_VM. Note,
however, that it's not just copying the whole memory; Linux
has an important optimization by using COW (Copy On Write)
pages. The child's memory pages are initially mapped to the
same pages shared by the parent, and only when we modify
them the copy happens. This is very important because processes
will often use a lot of shared read-only memory (think of the global
structures used by the standard library, for example).

• But still, the page tables still have to be copied. This overhead is
not applied to thread, since threads inside a process are sharing
address space — using same page tables and mappings

source: https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/

Pthread: TLS

Pthread: TLS

Pthread: TLS

