Operating Systems (Fall/Winter 2018) ' i)2 S, ?

ZHEJIANG UNIVERSITY

Light-Weight

PrOCEeSSES:

Dissecting Linux Threads

Yajin Zhou (http://yajin.orqg)

Zhejiang University

source: https://opensourceforu.com/2011/08/light-weight-processes-dissecting-linux-threads/

http://yajin.org

Thread

Threads have their own identity (thread ID), and can function
iIndependently.

They share the address space within the process, and reap the
benefits of avoiding any IPC (Inter-Process Communication) channel
(shared memory, pipes and so on) to communicate.

Threads of a process can directly communicate with each other

for example, independent threads can access/update a global
variable.

This model eliminates the potential IPC overhead that the kernel would
have had to incur. As threads are in the same address space, a thread
context switch is inexpensive and fast.

How does Linux implement threads”?

User-level threads in Linux follow the open POSIX (Portable Operating System
Interface for uniX) standard, designated as IEEE 1003. The user-level library (on
Ubuntu, glibc.so) has an implementation of the POSIX APl for threads.

Threads exist in two separate execution spaces in Linux — in user space and
the kernel.

User-space threads are created with the pthread library APl (POSIX
compliant).

In Linux, kernel threads are regarded as “light-weight processes”. An L\WP
IS the unit of a basic execution context. Unlike other UNIX variants, including
HP-UX and SunOS, there is no special treatment for threads. A process or a
thread in Linux is treated as a “task”, and shares the same structure
representation (list of struct task_structs).

These user-space threads are mapped to kernel threads.

How does Linux implement threads”?

- For a set of user threads created in a user process, there is a set of
corresponding LWPs in the kernel

:~/0s2018fall/code/4_thread/lwp1$./lwpl
LWP id is 20420
POSIX thread id is 0O

:~% ps -eflL
¥inaTiide <stdis. K> UID PID PPID LWP C NLWP STIME TTY TIME CMD
#include <syscall.h> root 1 0 110 IFDcti 3 00:00:05 /sbin/init text
#include <pthread.h> root 2 0) 2|0 IF petilis e 00:00:00 [kthreadd]
root 4 2 410 IFDecti3a? 00:00:00 [kworker/0:0H]
int main () root 6 2 6|0 I Detil3 2 00:00:00 [mm_percpu_wq]
{ root 7 2 710 1 Pct13 ? 00:00:00 [ksoftirqd/0]
pthread t tid = pthread self(); root 8 2 8|0 I Peti3 ? 00:00:02 [rcu_sched]
int sid = syscall (SYS gettid); root 9 2 9|0 1 Pct13 ? 00:00:00 [rcu_bh]
printf ("LWP id is %dn", sid); root 10 2 100 1 pct13 ? 00:00:00 [migration/0]
printf ("POSIX thread id is %dn", tid);root 11 2 | 11]o | 1 pect13 ? 00:00:00 [watchdog/0]
return 0; root 12 2 12| 0 IEPetil3 2 00:00:00 [cpuhp/0]
} root 13 2 1310 1 Petil3 2 00:00:00 [cpuhp/1]
root 14 2 1410 1 Peti3 2 00:00:00 [watchdog/1]
root 15 2 1510 T Dctil3 e 00:00:00 [migration/1]
root 16 2 16| 0 1 Pcti13 ? 00:00:00 [ksoftirqd/1]
root 18 2 18| 0 IFDct1307 00:00:00 [kworker/1:0H]
root 761 1 |761]0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 |806 |0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 |807 |0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 |808 |0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 [822]0 8 Pct13 ? 00:00:01 /usr/lib/snapd/snapd
root 761 1 |[823]0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 824 |0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd
root 761 1 4293 |0 8 Pct13 ? 00:00:00 /usr/lib/snapd/snapd

What is a Light-Weight Process?

An LWP Is a process created to facilitate a user-space thread. Each
user-thread has a 1x1 mapping to an LWP.

The creation of LWPs is different from an ordinary process; for a user
process “P”, its set of LWPs share the same group ID. Grouping
them allows the kernel to enable resource sharing among them
(resources include the address space, physical memory pages (VM),
signal handlers and files). This further enables the kernel to avoid
context switches among these processes. Extensive resource
sharing Is the reason these processes are called light-weight
processes.

How does Linux create L\WPs

Linux handles L\WPs via the non-standard clone() system call. [t is
similar to fork(), but more generic. Actually, fork() itself is a
manifestation of clone(), which allows programmers to choose the

resources to share between processes.

The clone() call creates a process, but the child process shares its
execution context with the parent, including the memory, file
descriptors and signal handlers. The pthread library too uses clong()
to implement threads. Refer to ./nptl/sysdeps/pthread/createthread.c
In the glibc version 2.11.2 sources.

Cres

CLONE (2) Linux Programmer's Manual CLONE(2)

NAME

top

clone, _ clone2 - create a child process

SYNOPSIS top

/* Prototype for the glibc wrapper function */

#define _GNU_SOURCE
#include <sched.h>

int clone(int(xfp)(void *), void *child stack,
int flags, void *arg, ...

/* pid_t *ptid, void *newtls, pid_t *ctid */);

/* For the prototype of the raw system call, see NOTES */

DESCRIPTION top

clone() creates a new process, in a manner similar to fork(2).

This page describes both the glibc clone() wrapper function and the
underlying system call on which it is based. The main text describes
the wrapper function; the differences for the raw system call are
described toward the end of this page.

Unlike fork(2), clone() allows the child process to share parts of
its execution context with the callin rocess, such as e virtua

address space, the table of file descriptors, and the table of signal
FandTers — (NoTe That on This rmamval pace-"ealTing process rommally
corresponds to "parent process". But see the description of
CLONE_PARENT below.)

One use of clone() is to imElement threads: multiple flows of control
in a program that run concurrently in a shared address space.

Create your own LWP

// 64kB stack
#define STACK 1024*64

// The child thread will execute this function
int threadFunction(void* argument) {
printf ("child thread entering\n");
close ((int*)argument) ;
printf ("child thread exiting\n");
return 0;

}

int main () {
void* stack;
pid t pid;
int f£d;

fd = open("/dev/null", O RDWR);
if (fd < 0) {
perror ("/dev/null") ;
exit(1l);
}

// Allocate the stack
stack = malloc (STACK) ;

if (stack == 0) {
perror ("malloc: could not allocate stack");
exit(l);

}
printf ("Creating child thread\n");

Create your own LWP

// Call the clone system call to create the child thread
pid = clone(&threadFunction,

(char*) stack + STACK,

SIGCHLD | CLONE FS | CLONE FILES |\

CLONE SIGHAND | CLONE VM,

(void~*) £d) ;
if (pid == -1) {
perror ("clone") ;

exit (2);
}

// Wait for the child thread to exit
pid = waitpid(pid, 0, 0);

if (pid == -1) {
perror ("waitpid");
exit (3);

}

// Attempt to write to file should fail, since our thread has
// closed the file.
if (write(fd, "c", 1) < 0) {

printf ("Parent:\t child closed our file descriptor\n");

}

// Free the stack
free (stack) ;

return 0O;

Create your own LWP

SIGCHLD : The thread sends a SIGCHLD signal to the parent process after completion.
It allows the parent to wait() for all its threads to complete.

CLONE_FS : Shares the parent’s filesystem information with its thread. This includes the
root of the filesystem, the current working directory, and the umask.

CLONE_FILES : The calling and caller process share the same file descriptor table. Any
change in the table is reflected in the parent process and all its threads.

CLONE_SIGHAND : Parent and threads share the same signal handler table. Again, if the
parent or any thread modifies a signal action, it is reflected to both the parties.
CLONE_VM : The parent and threads run in the same memory space. Any memory
writes/mapping performed by any of them is visible to other process.

A Slight Change to the Code

// Call the clone system call
pid = clone(&threadFunction,
(char*) stack + STACK,
SIGCHLD | CLONE FS l CLONE FILES
CLONE SIGHAND | CLONE VM,

(void~*) £d) ;

// Call the clone system call
pid = clone(&threadFunction,
(char*) stack + STACK,
SIGCHLD | CLONE FS |\
CLONE SIGHAND | CLONE VM,

(void~*) £d) ;

I\

:~/0s2018fall/code/4_thread/lwp2%$./lwp
Creating child thread
child thread entering
child thread exiting
Parent: <child closed our file descriptor

:~/0s2018fall/code/4_thread/lwp2$./process
Creating child thread
child thread entering
child thread exiting
Parent: write to /dev/null successes

Another Example: CLON

VM

static int child_func(void* arg) {
char* buf = (char*)arg;
printf("Child sees buf = \"%s\"\n", buf);
strcpy(buf, "hello from child");
return 0;

}

int main(int argc, char** argv) {

// Allocate stack for child task.
const int STACK_SIZE = 65536;
char* stack = malloc(STACK_SIZE);
if (Istack) {

perror("malloc");

ex1t(1l);
ks

// When called with the command-l1ine argument "vm"

CLONE_WM flag on.
unsigned long flags = 0;
1f (Cargc > 1 && !strcmp(argv[1l], "vm")) {
flags |= CLONE_VM;
¥

b

set the

char buf[100];
strcpy(buf, "hello from parent");
1f (clone(child_func, stack + STACK_SIZE,

flags | SIGCHLD, buf) == -1) {

perror("clone");
exit(l);

ks

int status;

1f (wait(&status) == -1) {
perror("wait");
exit(l);

ks

printf("Child exited with status %d. buf =
\"%s\"\n", status, buf);
return 0;

}

Why COW (Copy on Write) Is Not Enough

For processes, there's a bit of copying to be done when fork is
iInvoked, which costs time. The biggest chunk of time probably goes
to copying the memory image due to the lack of CLONE_VM. Note,
however, that it's not just copying the whole memory; Linux
has an important optimization by using COW (Copy On Write)
pages. The child's memory pages are initially mapped to the
same pages shared by the parent, and only when we modify
them the copy happens. This is very important because processes
will often use a lot of shared read-only memory (think of the global
structures used by the standard library, for example).

But still, the page tables still have to be copied. This overhead is
not applied to thread, since threads inside a process are sharing
address space — using same page tables and mappings

source: https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/

Pthread: TLS

int pthread_setspecific(pthread_key_t key, const void *value);

void xpthread_getspecific(pthread_key_t key);
int pthread_key_create(pthread_key_t xkey, void (xdestructor)(voidx));

pthread_key_t key;

struct args {

Pthreac”

void print_msg(char *msg) {
pid_t tid = syscall(SYS_gettid);
int *tl = (int *)pthread_getspecific(key);
printf("tid %lu msg: %s, tl: %d \n", (unsigned long)tid , msg, *tl);

}

void *exec_in_thread(struct args *args) {
int *tl = malloc(sizeof (int));
*tl = 5;
pthread_setspecific(key, tl);
print_msg(args->msg);
sleep(2);
*tl = 4;
print_msg(args->msg);
pthread_setspecific(key, NULL);
free(tl);
pthread_exit(NULL);

}

int main() {

int i = 0, num_threads = 10;

pthread_t threads[num_threads];

struct args *my_args = malloc(sizeof(struct args));

my_args->msg = "some message...";

pthread_key_create(&key, NULL);

for(i = 0; i<num_threads; i++) {
pthread_create(&threads[i], NULL, exec_in_thread, my_args);

i

for(i = 0; i<num_threads; i++) {
pthread_join(threads[i], NULL);

}

return 0O;

Pthread: TLS

__thread int x = 3;

void print_msg() {

pid_t tid = syscall(SYS_gettid);

printf("tid %lu x: %d \n", (unsigned long)tid , x);
}

void *exec_in_thread(struct args *args) {

X += 1;
print_msg();

sleep(3);
pthread_exit(NULL);

}

int main() {
int i = 0, num_threads = 10;
pthread_t threads[num_threads];
for(i = 0; i<num_threads; i++) {
pthread_create(&threads[i], NULL, exec_in_thread, NULL);
Y
for(i = 0; i<num_threads; i++) {
pthread_join(threads[i], NULL);
i

return 0;

IRt e =13

void print_msg() {

pid_t tid = syscall(SYS_gettid);

printf("tid %lu x: %d \n", (unsigned long)tid , x);
J

void *exec_in_thread(struct args *args) {

X += 1;
print_msg();

sleep(3);
pthread_exit(NULL);

}

int main() {
int i = 0, num_threads = 10;
pthread_t threads[num_threads];
for(i = 0; i<num_threads; i++) {
pthread_create(&threads[i], NULL, exec_in_thread, NULL);
}
for(i = 0; i<num_threads; i++) {
pthread_join(threads[i], NULL);
}

return 0;

